Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 203(22): e0036321, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516284

RESUMO

One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.


Assuntos
Temperatura Corporal , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Portador Sadio , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Humanos , Análise Serial de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Temperatura
2.
Mol Biol Evol ; 38(2): 368-379, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32871012

RESUMO

The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase-chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase-chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.


Assuntos
Adaptação Biológica , Interação Gene-Ambiente , Aptidão Genética , Proteínas de Choque Térmico HSP90/genética , Mutação , Saccharomyces cerevisiae
3.
Curr Opin Struct Biol ; 48: 141-148, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29351890

RESUMO

Biology has, and continues to be, shaped by evolutionary mechanisms. Within the past decade, local fitness landscapes have become experimentally tractable and are providing new perspectives on evolutionary mechanisms. Powered by next-generation sequencing, the impacts of all individual amino acid substitutions on function have been quantified for dozens of proteins. These fitness maps have been utilized to investigate the biophysical underpinnings of existing protein function as well as the appearance and enhancement of new protein functions. This review highlights emerging trends from this rapidly growing area of research, including an expanded understanding of the biophysical mechanisms underlying existing and new protein function, the roles epistasis and adaptation play in shaping evolution, and the prediction of disease-causing alleles in humans.


Assuntos
Adaptação Fisiológica/genética , Epistasia Genética , Evolução Molecular , Aptidão Genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Substituição de Aminoácidos , Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...